
Relational Thread-Modular Abstract
Interpretation Under Relaxed Memory Models

Thibault Suzanne 1 Antoine Miné 2

3rd December 2018
1École Normale Supérieure, PSL Research University, Paris

2Sorbonne Université, Laboratoire d’informatique de Paris 6 (LIP6)



Weakly Consistent Behaviour

x = 1; y = 1;
r0 = y; r1 = x;

The Programmer’s Intuition: Sequential Consistency
A ter execution, r0 = 1 || r1 = 1.

On x86
We can observe r0 = 0 && r1 = 0.

1



A More Useful Program: Peterson’s Lock Algorithm

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

• Is mutual exclusion guaranteed ? Yes (previous work).
• Does the verification scale for 𝑁 threads ?

2



A More Useful Program: Peterson’s Lock Algorithm

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

• Is mutual exclusion guaranteed ? Yes (previous work).
• Does the verification scale for 𝑁 threads ?

2



A More Useful Program: Peterson’s Lock Algorithm

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

• Is mutual exclusion guaranteed ? Yes (previous work).
• Does the verification scale for 𝑁 threads ?

2



A More Useful Program: Peterson’s Lock Algorithm

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

• Is mutual exclusion guaranteed ? Yes (previous work).
• Does the verification scale for 𝑁 threads ?

2



Presentation of the Problem

• We focus on verifying reachability properties on relaxed
memory models.

• In a previous work, we used an abstract interpretation
method based on array domains.

• We show how to extend it in a thread-modular way for
scalability.

3



Plan

1. The Relaxed Memory Model

2. Monolithic Analysis

Summarisation

Final Abstraction

3. Modular analysis

The Interferences Framework

Thread-Modular Abstractions

4. Results

4



The Relaxed Memory Model



Total Store Ordering, the Base Model of x86

• Buffers are totally ordered FIFO queues.
• Buffer entries are flushed non-deterministically.
• Instruction mfence flushes the whole buffer of the thread.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer
𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42 𝑥 → 4

𝑥 → 0 𝑦 → 0

5



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Partial Store Ordering Encoding

We use one pseudo-variable for each buffer entry.
Inter-variables ordering is abstracted away.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥 = 15

𝑥 = 42

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1
6



Monolithic Analysis



The Interleaving Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

7



The Interleaving Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

7



The Interleaving Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

7



A product graph example

(ℓ )

(ℓ )

(ℓ )

𝑥 > 0𝑥 = 𝑥 − 1

𝑥 ≤ 0

(ℓ )

(ℓ )

𝑥 = 10

(ℓ ) (ℓ )

(ℓ ) (ℓ )

(ℓ ) (ℓ )

(ℓ ) (ℓ )

(ℓ ) (ℓ )

(ℓ ) (ℓ )

𝑥 > 0𝑥 = 𝑥 − 1

𝑥 ≤ 0

𝑥 > 0𝑥 = 𝑥 − 1

𝑥 ≤ 0

𝑥 = 10

𝑥 = 10

𝑥 = 10

8



General Abstraction Idea

Buffers are the hard(est) part of the abstraction:

• They have an unbounded size.
• This size can change in a dynamic and undeterministic
way even between execution steps.

We proposed to adapt array abstractions (specifically,
summarisation1) to efficiently represent buffers.

1Denis Gopan, Frank DiMaio, Nurit Dor, Thomas Reps, and Mooly Sagiv.
Numeric domains with summarized dimensions. In TACAS 2004.

9



Monolithic Analysis

Summarisation



Summarising the Buffers

Observation.

• The most recent entry, 𝑥𝑇 , plays a special role: it will be
used for reading 𝑥.

• The other entries are only destined to reach the memory
eventually.

Summarisation.

• In each state where they are defined, we group the
variables 𝑥𝑇 , ..., 𝑥𝑇∞ into a single summarised variable 𝑥𝑇𝑏𝑜𝑡.

• 𝑥𝑇 is kept separated: otherwise, reading from the buffer
would be very imprecise.

10



Summarising the Buffers

Observation.

• The most recent entry, 𝑥𝑇 , plays a special role: it will be
used for reading 𝑥.

• The other entries are only destined to reach the memory
eventually.

Summarisation.

• In each state where they are defined, we group the
variables 𝑥𝑇 , ..., 𝑥𝑇∞ into a single summarised variable 𝑥𝑇𝑏𝑜𝑡.

• 𝑥𝑇 is kept separated: otherwise, reading from the buffer
would be very imprecise.

10



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥 = 1

𝑦 = 2

𝑥𝑏𝑜𝑡 ∈ {15; 42}

𝑥 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

11



Monolithic Analysis

Final Abstraction



Partitioning and Numerical Domains for Abstraction

• Summarised states are partitioned according to the
summarised variables they defined (equivalently, a partial
information on buffer lengths).

• Then we can use numerical domains (octagons,
polyhedra…) to abstract each partition.

• Partitioning also helps for the definition of abstract
operators.

12



Modular analysis



A Scalability Issue

The interleavings analysis works well for 2 threads. What
about… 3? 5? 10? 100?

⟹ Combinatorial explosion of the graph.

Monolithic analyses do not scale. We need thread modularity.

13



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) ⊥
(ℓ )
(ℓ )

(ℓ ) ⊥
(ℓ ) ⊥
(ℓ ) ⊥

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) ⊥
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) ⊥
(ℓ ) ⊥
(ℓ ) ⊥

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) ⊥
(ℓ ) ⊥
(ℓ ) ⊥

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 0
(ℓ ) ⊥

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 = 0
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) ⊥
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 1
(ℓ ) ⊥

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1
Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 1
(ℓ ) 𝑥 = 0

Effect 𝑥 ↦ 0

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis example

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 1
(ℓ ) 𝑥 = 0

Effect 𝑥 ↦ 0

(ℓ ) 𝑥 ∈ {0, 1}
(ℓ ) 𝑥 = 0
(ℓ ) 𝑥 = 1

Effect 𝑥 ↦ 1

Interferences need only be applied at read points.

14



Modular analysis

The Interferences Framework



Non-relational interferences

We just met them!

They are simple pairs (variable↦ possible new value).

15



Relational interferences

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

T2 may write 1 in 𝑥 if 𝑥 was previously equal to 0, and by doing
so it would go from (ℓ ) to (ℓ ).

Relational interferences...

• Link a variable modification to the previous state
• Hold control information

16



Relational interferences

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

T2 may write 1 in 𝑥 if 𝑥 was previously equal to 0, and by doing
so it would go from (ℓ ) to (ℓ ).

Relational interferences...

• Link a variable modification to the previous state
• Hold control information

16



Relational interferences

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

T2 may write 1 in 𝑥 if 𝑥 was previously equal to 0, and by doing
so it would go from (ℓ ) to (ℓ ).

Relational interferences...

• Link a variable modification to the previous state
• Hold control information

16



Relational interferences

thread /* T1 */ {

while true {

while (ℓ ) x != 1 {}

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

}

}

thread /* T2 */ {

while true {

while (ℓ ) x != 0 {}

/* Critical section ... */
(ℓ ) x = 1; (ℓ )

}

}

T2 may write 1 in 𝑥 if 𝑥 was previously equal to 0, and by doing
so it would go from (ℓ ) to (ℓ ).

Relational interferences...

• Link a variable modification to the previous state
• Hold control information

16



Summing up the interferences modular analysis

• Works as a nested fixpoint.
• The inner fixpoint stabilises a thread result depending on a
given interferences subset.

• The outer fixpoint runs the inner fixpoint until stabilisation
of the generated interferences.

• Global control information goes from structuring the
analysis to being part of its state.

• We add specific 𝑝𝑐𝑇 variables to thread states.

17



Modular analysis

Thread-Modular Abstractions



Local States of thread 𝑇

• We add an auxiliary variable 𝑝𝑐𝑇′ for each 𝑇 ′ ≠ 𝑇
• We forget all buffers from other threads
• We still keep other threads local variables

18



Control Abstraction

Is the abstraction for the 𝑝𝑐𝑇′ variables.

Mainly inspired by Raphaël Monat and Antoine Miné: Precise
thread-modular abstract interpretation of concurrent programs
using relational interference abstractions. VMCAI 2017.

Possible choices:

• Flow insensitivity: 𝛼(ℓ) = ⊤.
• Concrete control: 𝛼(ℓ) = ℓ.
• Control partitioning: we group together chosen control
points.

19



Control partitioning: splitting at property points

thread /* T1 */ {
(ℓ ) while (ℓ ) true {

(ℓ ) while (ℓ ) x != 1 {(ℓ )} (ℓ )

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

} (ℓ )

} (ℓ )

𝛼((ℓ )..(ℓ )) = ℓ♯

𝛼((ℓ )..(ℓ )) = ℓ♯

20



Control partitioning: also splitting at loop heads

thread /* T1 */ {
(ℓ ) while (ℓ ) true {

(ℓ ) while (ℓ ) x != 1 {(ℓ )} (ℓ )

/* Critical section ... */
(ℓ ) x = 0; (ℓ )

} (ℓ )

} (ℓ )

𝛼((ℓ )) = ℓ♯

𝛼((ℓ )..(ℓ )) = ℓ♯

𝛼((ℓ )..(ℓ )) = ℓ♯

𝛼((ℓ )..(ℓ )) = ℓ♯

21



Interferences

They are built with the “least common information” of local
states abstractions:

• We forget every buffer
• We keep each 𝑝𝑐𝑇 variable to represent control

To represent pairs of states, we used “primed” variables:

𝑥 = 0, 𝑦 = 1, 𝑝𝑐 = (ℓ ), 𝑝𝑐 = (ℓ ), 𝑥′ = 1, 𝑦′ = 1, 𝑝𝑐′ = (ℓ ), 𝑝𝑐′ = (ℓ )

Then we apply the same control and numerical abstraction as
for the local states.

22



Flush closure: an optimisation

Flush is non-deterministic: we need closed-by-flush results.

Naive flush closure

• At each step, we flush everything until we reach a fixpoint.
• Flushes discover new applicable interferences, and we
need to close a ter interference application.

“Smart” flush closure

• J𝑓𝑙𝑢𝑠ℎ 𝑧K ∘ J𝑥 ← 1K = J𝑥 ← 1K ∘ J𝑓𝑙𝑢𝑠ℎ 𝑧K
• From a closed element, it is sufficient to compute the
flushes of 𝑥 a ter operations that read or write 𝑥.

• We label and partition the interferences by the shared
variable they are related to.

23



Flush closure: an optimisation

Flush is non-deterministic: we need closed-by-flush results.

Naive flush closure

• At each step, we flush everything until we reach a fixpoint.
• Flushes discover new applicable interferences, and we
need to close a ter interference application.

“Smart” flush closure

• J𝑓𝑙𝑢𝑠ℎ 𝑧K ∘ J𝑥 ← 1K = J𝑥 ← 1K ∘ J𝑓𝑙𝑢𝑠ℎ 𝑧K
• From a closed element, it is sufficient to compute the
flushes of 𝑥 a ter operations that read or write 𝑥.

• We label and partition the interferences by the shared
variable they are related to.

23



Flush closure: an optimisation

Flush is non-deterministic: we need closed-by-flush results.

Naive flush closure

• At each step, we flush everything until we reach a fixpoint.
• Flushes discover new applicable interferences, and we
need to close a ter interference application.

“Smart” flush closure

• J𝑓𝑙𝑢𝑠ℎ 𝑧K ∘ J𝑥 ← 1K = J𝑥 ← 1K ∘ J𝑓𝑙𝑢𝑠ℎ 𝑧K
• From a closed element, it is sufficient to compute the
flushes of 𝑥 a ter operations that read or write 𝑥.

• We label and partition the interferences by the shared
variable they are related to.

23



Results



Precision

Small “hard to check” examples (typically mutual exclusion
algorithms).

Test Monolithic Modular
abp 3 3

concloop 3 3

kessel 3 7

dekker 3 3

peterson 3 3

queue 3 3

bakery 7

24



Scalability

2 4 6 8
10−

10

10

Number of threads

An
al
ys
is
tim

e
(s
ec
)

Monolithic
Modular

2 4 6 8

10

10

10

Number of threads

M
em

or
y
ne
ed
ed

(M
B)

Monolithic
Modular

thread {

while (x != 0) { };

x = 1;

}

thread {

while (x != 1) { };

x = 2;

}

/* .......... */

thread {

while (x != N) { };

x = 0;

}

25



Conclusion

• In a previous work: abstract interpretation under relaxed
memory models.

• We show how to extend it in a thread-modular way.
• We got encouraging results : similar precision, better
scaling.

• Future work:
• Other models
• Production-grade scaling †

• We went from 2 to 10, can we go from 10 to 𝑁? †

† Thread-modularity is a prerequisite!

26



Thanks for your attention !

26


	The Relaxed Memory Model
	Monolithic Analysis
	Modular analysis
	Results

