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Abstract We address the verification problem of numeric properties in
many-threaded concurrent programs under weakly consistent memory
models, especially TSO. We build on previous work that proposed an
abstract interpretation method to analyse these programs with rela-
tional domains. This method was not sufficient to analyse more than
two threads in a decent time. Our contribution here is to rely on a rely-
guarantee framework with automatic inference of thread interferences
to design an analysis with a thread-modular approach and describe re-
lational abstractions of both thread states and interferences. We show
how to adapt the usual computing procedure of interferences to the ad-
ditional issues raised by weakly consistent memories. We demonstrate
the precision and the performance of our method on a few examples,
operating a prototype analyser that verifies safety properties like mutual
exclusion. We discuss how weak memory models affect the scalability
results compared to a sequentially consistent environment.

1 Introduction

Multicore programming is both a timely and challenging task. Parallel architec-
tures are ubiquitous and have significant advantages related to cost effectiveness
and performance, yet they exhibit a programming paradigm that makes reas-
oning about the correctness of the code harder than within sequential systems.
Weakly consistent memory models, used to describe the behaviour of distributed
systems and multicore CPUs, amplify this fact: by allowing more optimisations,
they enable programs to run even faster; however this comes at the cost of
counter-intuitive semantic traits that further complicate the understanding of
these programs, let alone their proof of correctness. These difficulties coupled
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thread /* 1 */ {
x = 1;
r1 = y;

}

thread /* 2 */ {
y = 1;
r2 = x;

}

Figure 1: A simple program with counter-intuitive possible results on x86.

with the use of such architectures in critical domains call for automatic reason-
ing methods to ensure correctness properties on concurrent executions.

In a previous work [20], we proposed an abstract interpretation method to
verify such programs. However, this method worked by building a global control
graph representing all possible interleavings of the threads of the target pro-
gram. The size of this graph grows exponentially with the number of threads,
which makes this method unable to scale. This paper describes a thread-modular
analysis that circumvents this problem by analysing each thread independently,
propagating through these thread analyses their effect on the execution of other
threads. We target in particular the Total Store Ordering (TSO) and Partial
Store Ordering (PSO) memory models.

1.1 Weak Memory Models

A widespread paradigm of concurrent programming is that of shared memory.
In this paradigm, the intuitive semantics conforms to sequential consistency
(SC) [12]. In SC, the allowed executions of a concurrent program are the in-
terleavings of the instructions of its threads. However, modern multicore archi-
tectures and concurrent programming languages do not respect this property:
rather, for optimisation reasons, they specify a weakly consistent memory model
that relaxes sequential consistency and allows some additional behaviors.

We mainly target the TSO (Total Store Ordering) memory model, which
is amongst others known for being the base model of x86 CPUs [19]. In this
model, a thread cannot immediatly read a store from another thread: they
write through a totally ordered store buffer. Each thread has its own buffer.
Non-deterministically, the oldest entry of a store buffer can be flushed into the
memory, writing the store value to the corresponding shared variable. When at-
tempting to read the value of some variable, a thread begins by looking at the
most recent entry for this variable in its store buffer. If there is none, it reads
from the shared memory.

The program of Figure 1 exhibits a non-intuitive behaviour. In SC, after its
execution from a zeroed memory, either r1 or r2 must be equal to 1. However,
when executed on x86, one can observe r1 = 0 && r2 = 0 at the end. This
happens when Thread 1 (respectively Thread 2) reads the value of x (respectively
y) whereas Thread 2 (respectively Thread 1) has not flushed its store from its
buffer yet.

Another related model, PSO (Partial Store Ordering), is strictly more re-
laxed than TSO, in that its buffers are only partially ordered: stores to a same



variable keep their order, but stores to different variables can be flushed in any
order into the memory. Another way of expressing it consists in having a totally
ordered buffer for each thread and each variable, with no order between different
buffers. Both models define a mfence instruction that flushes the buffer(s) of the
thread that executes it. A systematic insertion of mfence allows to get back to
sequential consistency, but has a performance cost, thus one should avoid using
this instruction when it is not needed for correctness.

As we stated earlier, our main target is TSO, as most previous abstract in-
terpretation works. It acts as a not too complex but real-life model, and fills a
sweet spot where relaxed behaviours actually happen but do not always need
to be forbidden for programs to be correct. However, to design a computable
analysis that stays sound, we were forced to drop completeness by losing some
(controlled) precision: this is the foundation of abstract interpretation [5]. Our
abstraction ignores the write order between two different variables, to only re-
member sequences of values written into each variable independently. This design
choice makes our analysis sound not only under TSO, but also incidentally under
PSO. Therefore we will present it as a PSO analysis since it will simplify the
presentation, although the reader should have in mind that it stays sound w.r.t.
TSO. The loss of precision, in practice, incurred by a PSO analysis on a TSO
program will be discussed in Section 4.

We believe our analysis can be extended to more relaxed models such as
POWER/ARM by adding “read buffers”. This extension could pave the way for
the C and Java models, which share some concepts, but we did not have the
time to properly study them yet. However we rely on a very operational model:
more complex ones are axiomatically defined, so one will need to provide a sound
operational overapproximation before doing abstraction.

1.2 Abstraction of Relaxed Memory

To analyse concurrent programs running under PSO, we focus on abstract inter-
pretation [5]. The additional difficulty to design abstractions when considering
store-buffer-based memory models lies in buffers: they are unbounded and their
size changes dynamically and non-deterministically. This work builds on our pre-
vious work [20] that proposed an efficient abstraction for representing buffers.

Our implementation (cf. Section 4) targets small algorithms implementable
in assembly. Hence the core language of the programs we aim to analyse is a
minimal imperative language, whose syntax is defined in Figure 3, Section 2. The
program is divided in a fixed number of threads, and they all run simultaneously.
Individual instructions run atomically (one can always decompose a non-atomic
instruction into atomic ones). We believe that additional features of a realistic
programming language, such as data structures and dynamic allocation, are
orthogonal to this work on weakly consistent memory: we focus on numerical
programs, yet one can combine our abstractions with domains targetting these
features to build a more complete analysis.

The domain proposed in our previous paper [20] relies on a summarisation
technique initially proposed by Gopan et al. [6] to abstract arrays, which they



thread /* 0 */ {
while true {

while x != 1 {}
/* Critical start */
...
/* Critical end */
/* label l1 */
x = 0;
/* label l2 */

}
}

thread /* 1 */ {
while true {

while x != 0 {}
/* Critical start */
...
/* Critical end */
x = 1;

}
}

Figure 2: Round-robin: a concurrent program example.

adapt to abstract unbounded FIFO queues. Summarisation consists in grouping
together several variables x1, ..., xn in a numerical domain into a single summar-
ised variable xsum, which retains each possible value of every xi. For instance, let
us consider two possible states over three variables: (x, y, z) ∈ {(1, 2, 3); (4, 5, 6)}.
If we regroup x and y into a summarised variable vxy, the possible resulting states
are (vxy, z) ∈ {(1, 3); (2, 3); (4, 6); (5, 6)}. Note that, due to summarisation, these
concrete states of (x, y, z) are also described by that abstract element: (1, 1, 3),
(2, 2, 3), (2, 1, 3), (4, 4, 6), (5, 5, 6), (5, 4, 6).

We use this technique to summarise the content of each buffer, excluding
the most recent entry that plays a special role when reading from the memory.
Once summarisation is done, we obtain states with bounded dimensions that
can be abstracted with classic numerical domains. This abstraction is described
at length in our previous paper [20].

1.3 Interferences: Thread-Modular Abstract Interpretation

The immediate way of performing abstract interpretation over a concurrent pro-
gram is to build the global control graph, product of the control graph of each
thread, that represents each possible interleaving. This graph has a size which
is exponential in the number of threads and linear in each thread size: it does
not scale up. Thread-modular analyses have been designed to alleviate this com-
binatorial explosion [8, 10, 15–17]. Amongst them, we use the formal system of
interferences, that has been proposed by Miné [15] to analyse each thread in
isolation, generating the effects it can have on the execution of other threads,
and taking into account the effects generated by these other threads. Thread-
modular analysis scales up better because the analysis is linear in the sum of
thread sizes (instead of their product), times the number of iterations needed to
stabilise the interferences (which is low in practice, and can always be accelerated
by widening [15]).

The effects generated by this analysis are named interferences. Consider the
program in Figure 2, running in sequential consistency from a zeroed memory.
This program is a standard round-robin algorithm, whose purpose is to alternate
the presence of its threads in the critical section. To analyse it, we first consider



Thread 0 and analyse it separately as if it were a sequential program. It cannot
enter the critical section since x is initially equal to 0, so the analysis ends
here. Then we analyse Thread 1, that immediately exits its inner loop and then
enters the critical section, after which it sets x to 1. We then generate the simple
interference T1 : x 7→ 1, that means that Thread 1 can put 1 in x. Every read
from x by a thread can now return 1 instead of the value this thread stored last,
in a flow insensitive way. Afterwards, Thread 1 analysis ends: it cannot enter
back its critical section, since x is still equal to 1 when it tries again. We go
back to Thread 0. The new analysis will take into account the interference from
Thread 1 to know that x can now be equal to 1, and thus that Thread 0 can enter
its critical section. It will generate the interference T0 : x 7→ 0, and notice that
the critical section can be entered several times when applying the interference
from Thread 1. Then the second analysis of Thread 1 will also determine that
Thread 1 can enter its critical section more than once. No more interference is
generated, and the global analysis has ended. It is thread-modular in the sense
that it analyses each thread code in isolation from other thread code.

This simple interference analysis is provably sound: in particular, it has man-
aged to compute that both threads can indeed enter their critical section. How-
ever, it did not succeed in proving the program correct. In general, simple in-
terferences associate to each variable (an abstraction of) the set of its values at
each program point. They are non-relational (in particular, there is no relation
between the old value of a variable and its new value in an interference) and
flow insensitive. To alleviate this problem, previous works [15, 16] introduced
relational interferences, that model sets of possible state transitions caused by
thread instructions between pairs of program points, i.e., they model the effect
of the thread in a fully relational and flow-sensitive way, which is more precise
and more costly, while still being amenable to classic abstraction techniques. For
instance, in the program of Figure 2, one such interference would be “When x
is equal to 1, and Thread 1 is not in its critical section, Thread 0 can write 0 in
x; and by doing so it will go from label l1 to label l2”. The relational inter-
ference framework is complete for reachability properties thus not computable,
but Monat and Miné [16] developed precise abstractions of interferences in SC
that allow proving this kind of programs in a decidable way.

In this paper, we will combine such abstractions with the domains for weakly
consistent memory to get a computable, precise and thread-modular abstract
interpretation based analysis under TSO. We implemented this analysis and
provided some results on a few examples. We mostly aim to prove relational nu-
merical properties on small albeit complex low-level programs. These programs
are regarded as difficult to check — for instance, because they implement a syn-
chronisation model and are thus dependent on some precise thread interaction
scenario. We show that our analysis can retain the precision needed to verify
their correctness, while taking advantage of the performances of a modular ana-
lysis to be able to efficiently analyse programs with more than 2 threads, which
is out of reach of most non-modular techniques.



〈prog〉 :: = 〈thread〉 *

〈thread〉 ::= thread ‘{’
〈stmt〉 ‘}’

〈stmt〉 ::=
| 〈var〉 ‘=’ 〈expr〉
| if 〈expr〉 ‘{’ 〈stmt〉 ‘}’

[else ‘{’ 〈stmt〉 ‘}’]

| while 〈expr〉 ‘{’ [
〈stmt〉 ] ‘}’

| 〈stmt〉 ‘;’ 〈stmt〉

〈expr〉 ::=
| 〈var〉
| n ∈ Z
| 〈expr〉 † 〈expr〉

| ?〈expr〉
| ‘(’ 〈expr〉 ‘)’

〈var〉 ::= x, y, z...

〈†〉 ::= ‘*’ | ‘/’ | ‘+’ | ‘-’ | ‘=’
| ‘<’ | ‘>’ | ‘<=’ | ‘>=’ |
‘&&’ | ‘||’

〈?〉 ::= not | ‘-’

Figure 3: Program syntax

Section 2 describes the monolithic and modular concrete semantics of con-
current programs running under the chosen memory model. Section 3 defines a
computable modular abstraction for these programs. Section 4 presents exper-
imental results on a few programs using a test implementation of our abstract
domains and discusses scaling when considering weakly consistent memories. We
present a comparison with related works in Section 5. Section 6 concludes.

The monolithic semantics of Section 2 has been dealt with in our previous
work [20]. Our contribution is composed of the modular semantics of Section 2,
Section 3 and Section 4.

2 Concrete Semantics

2.1 Interleaving Concrete Semantics

Figure 3 defines the syntax of our programs. We specify in Figure 4 the domain
used in the concrete semantics. We consider our program to run under the PSO
memory model. Although TSO is our main target, PSO is strictly more relaxed,
therefore our PSO semantics stays sound w.r.t. TSO.

Notations. Shared is the set of shared variable symbols, Local is the set of
thread-local variables (or registers). Unless specified, we use the letters x, y, z
for Shared and r for Local. V is the value space of variables, for instance Z or
Q. e is an arithmetic expression over elements of V and Local (we decompose
expressions involving Shared variables into reads of these variables into Local
variables and actually evaluating the expression over these locals). ◦ is function
composition. L is a set of program points or control labels.

Remark 1. D is isomorphic to a usual vector space. As such, it supports usual
operations such as variable assignment (x := e) or condition and expression
evaluation. We will also use the add and drop operations, which respectively
add an unconstrained variable to the domain, and delete a variable and then
project on the remaining dimensions.



Mem , Shared→ V Shared memory

TLS , Local→ V Thread Local Storage (registers)

∀x ∈ Shared,BufTx ,
⋃
N∈N

({
xT1 , ..., x

T
N

}
→ V

)
Buffers

S , Mem× TLS×
∏

x∈Shared
T∈Thread

BufTx Program states

D , P(S ) Sets of program states

C , Thread→ L Control states

Figure 4: A concrete domain for PSO programs.

As the variables in Shared live both in the buffers and the memory, we will
use the explicit notation xmem for the bindings of Mem. We represent a buffer of
length N of the thread T for the variable x by N variables xT1 , ..., xTN containing
the buffer entries in order, xT1 being the most recent one and xTN the oldest one.

This concrete domain has been used by in our previous work [20] to define
the concrete non-modular semantics of the programs. For each statement cor-
responding to a control graph edge stmt and for each thread T , they define the
operator JstmtKT : D → D that computes the set of states reachable when T
executes stmt from any state in an input set. Jx := eKT adds the value of e into
the buffer of T for the variable x, shifting the already present xTi . Jr := xK reads
xT1 , or, if not defined (the buffer is empty), xmem. Jflush xKT removes the oldest
entry of x and writes its value in xmem. JmfenceKT ensures that all buffers of
T are empty before executing subsequent operations. The formal semantics is
recalled in Figure 5. For convenience reasons, we define J.K on state singletons
{S} and then lift it pointwise to any state set.

The standard way of using this semantics consists in constructing the product
control graph modeling all interleavings of thread executions of a program from
the control graph of each thread it is composed of. The semantics of the program
is then computed as the least fixpoint of the equation system described by this
graph, whose vertices are control states (elements of C as defined in Figure 4)
and edges are labelled by operators of Figure 5. The non-determinism of flushes
can be encoded by a self-loop edge of label Jflush xKT for each x ∈ Shared,
T ∈ Thread on each vertex in the graph. However, we will now state a lemma
that will provide us a new and more efficient computation method.

Lemma 1 (Flush commutation). Let x ∈ Shared and Jop
�x
K be an operator

that neither writes to nor reads from x, that is either Jy := exprK, Jr := yK,
Jr := exprK or JconditionK, with ∀y ∈ Shared, y 6= x⇒ y /∈ condition. Then:



∀T ∈ Thread, J.KT : D → D

Jx := eKT {S} , JxT1 := eK ◦ JxT2 := xT1 K ◦ ... ◦ JxTLT
S

(x)+1 := xTLT
S

(x)K ◦ Jadd xTLT
S

(x)+1K{S}

Jr := xKT {S} ,
{

Jr := xmemKS if LTS (x) = 0
Jr := xT1 KS if LTS (x) ≥ 1

JmfenceKT {S} ,
{
S if ∀x, LTS (x) = 0
∅ otherwise

Jflush xKT {S} ,

{
∅ if LTS (x) = 0
Jdrop xT

LT
S

(x)K ◦ Jxmem := xT
LT
S

(x)K{S} if LTS (x) ≥ 1

∀X ∈ D , JstmtKTX ,
⋃
S∈X

JstmtKT {S}

Figure 5: Concrete interleaving semantics in PSO.

∀S ∈ S ,∀T ∈ Thread, Jflush xKT ◦ Jop
�x
KS = Jop

�x
K ◦ Jflush xKTS

Proof. We consider S as a numerical point, each variable being a dimension in
the state space. We distinguish two cases:

Case 1: LTS (x) = 0. Jflush xKTS = ∅, thus Jop
�x
K(Jflush xKTS) = ∅. Jop

�x
K

does not add any entry to the buffer of x and T , since Jx := eK is the only operator
that does it. Therefore LTS (Jop

�x
KS) = 0, which implies Jflush xKT (Jop

�x
KS) = ∅.

Case 2: LTS (x) > 0. Jop
�x
K does not modify the value of xT

LT
S

(x), and does not
use the value of the dimension xmem. Therefore Jxmem := xT

LT
S

(x)K commutes
with Jop

�x
K. Jop

�x
K does not use the value of xT

LT
S

(x) either, therefore Jop
�x
K also

commutes with Jdrop xT
LT
S

(x)K. Chaining both commutations makes Jop
�x
K com-

mute with Jflush xKT . ut

This flush commutation allows us to avoid computing the flush of each vari-
able from each thread at each control state, and to compute only the flush of the
variables that have been affected by the statements leading to this control state.
Specifically, when computing the result of an edge labelled with JopxKT (where
JopxK denotes an operator that reads from or writes to the Shared variable x)
from a concrete element X, we do not only compute JopxKTX, but:

Jflush xK∗ ◦ JopxKTX
where :

Jflush xK∗X , lfp(λY.X ∪
⋃

T∈Thread
Jflush xKTY )

That is, we compute the result of a closure by flush after applying the oper-
ator. Note that flushes are computed from all threads, not only the one perform-
ing JopxK. The lemma states that no other flush is needed. The result R : C → D
of the analysis can be stated as a fixpoint on the product control graph:



J̃opKT : D → D , λX.

{
Jflush xK∗ ◦ JopKTX if JopK acts on x ∈ Shared
JopKTX otherwise

R0 : C → D = λc. if c is initial then > else ⊥

R = lfp λR.R0 ∪

λc. ⋃
c′

op−→T c edges

J̃opKTR(c′)


This property will prove itself even more useful when going into modular

analysis.

Remark 2. As long as we stay in the concrete domain, this computation method
has no effect on precision. However, this is no longer necessarily true when going
into the abstract, and we found this method to be actually more precise on some
examples: the flush abstract operator may induce information loss, and the new
method performs less flush operations, thus retaining more precision.

2.2 Modular Concrete Semantics

We rely on Miné’s interference system [15] to elaborate a thread-modular se-
mantics from the monolithic previous one, as well as a computation method.

Transition Systems. The interference-based semantics can be expressed in
the most general way when resorting to labelled transition systems rather than
to equation systems (that are described by the control graph based analysis).
We follow Cousot and Cousot [5] and express the transition system associated
to our concurrent programs as a set Σ = C ×S of global states, a set I ⊆ Σ of
initial states, and a transition relation τ ⊆ Σ × Thread×Σ. We write σ T−→τ σ

′

for (σ, T, σ′) ∈ τ , which denotes that executing a step from thread T updates
the current global state σ into the state σ′. We refer to Cousot [5] and Miné [15]
for the formal definition of such a system, which is quite standard.

The semantics of this transition system specifies that a global state σ is
reachable if and only if there exists a finite sequence of states σ1, ..., σn and
some (not necessarily different) threads Tα, Tβ , ..., Tψ, Tω ∈ Thread such that
I
Tα−−→τ σ1

Tβ−−→τ ...
Tψ−−→τ σn

Tω−−→τ σ.

Local States. The monolithic transition system uses as global states a pair
of a global control information in C and a memory state in S . The modular
transition system defines the local states of a thread T by reducing the control
part to that of T only. By doing so, one retrieves a semantics that has the same
structure as when performing a sequential analysis of the thread. However, the
control information of the other threads is not lost, but kept in auxiliary variables



pcT ′ for each T ′ ∈ Thread, T ′ 6= T . This is needed for staying complete in the
concrete, and useful to remain precise in the abstract world. We denote by ST

the states in S augmented with these pcT ′ variables. Local states of T ∈ Thread
thus live in ΣT = L×ST . We define the domain DT , P(ST ).

Interferences. Interferences model interaction and communication between
threads. The interferences set IT caused by a thread T are transitions produced
by T : IT ,

{
σ

T−→τ σ
′ ∈ τ | σ is a state reachable from I

}
.

Computation Method. The method for computing an interference modular
semantics works with two least fixpoint iterations:

– The inner fixpoint iteration computes, for a given interference set, the local
states result of a thread. It also produces the interferences set generated by
this thread executions. It will ultimately compute the program state reach-
ability, one thread at a time.

– The outer fixpoint iteration computes fully the inner fixpoint, using the
generated interferences from one inner analysis as an input of the next one.
It goes on, computing the inner fixpoint for each thread at each iteration,
until the interferences set is stabilised with increasing sets of interferences
starting from an empty set.

The outer least fixpoint computation is a standard run-until-stabilisation
procedure. The inner fixpoint is alike sequential program fixpoint computation,
with the specificity of interference that we will describe. We refer to Miné [15]
for the complete development on general transition systems, while we focus here
on the specific case of the language of Section 2.1 under weak memory models.

This analysis method is thread modular in the sense that it analyses each
thread in isolation from other thread code. It must still take into account the
interferences from other threads to remain sound. Furthermore, this is a con-
structive method: we infer the interference set from scratch rather than relying
on the user to provide it. This is why we need to iterate the outer fixpoint com-
putation as opposed to analysing each thread separately only once. Practically,
we observe that the number of outer iterations until stabilisation is very small
(less than 5) on typical programs.

Let us consider the graph representation of the inner fixpoint computation.
As already stated, it takes an interference set as an input and works like a se-
quential program analysis, except when computing the result of an edge transfer
operation, the analyser also uses the origin and the resulting local states to build
an interference corresponding to the transition associated to the edge. As ST

holds the control information about other threads, as long as we stay in the con-
crete domain, all the information needed to build this interference is available.
The analyser also needs to take into account the transition from other threads:
this is done through an interference application phase that can be performed just
after computing the local state attached to a vertex. Amongst all interferences,



the analyser picks the ones whose origin global state is compatible with the cur-
rent local state (which means they model transitions that can happen from this
local state); then it updates the local state, adding the destination global states
of these interferences as possible elements.

On a thread analysis with a SC model, these two phases are well separated:
first, a generation phase computes a destination state as well as generated inter-
ferences. Then the analyser joins the destination states from all incoming vertices
to get the resulting current state at the current label. After this, the application
phase applies candidate interferences, and the fixpoint engine can move to the
next vertex to be computed. However, it works differently in a relaxed memory
setting, due to flush self-loop edges: one wants to avoid useless recomputations of
incoming edges by computing a flushing fixpoint before applying interferences.
These flushes generate interferences themselves, that must be taken into account.

Yet we showed earlier, for the monolithic analysis, that it was equivalent to
compute flushes only when needed (which is more efficient), that is after oper-
ations on the same variable, with which they do not commute. This works the
same way in modular analyses: when applying interferences from other threads,
one can in particular apply interferences that interact with a variable in the
shared memory. These applications do not commute with flushes of this vari-
able: therefore, one must close by flush with respect to a variable after applying
interferences that interact with this variable.

3 Abstract Semantics

3.1 Abstracting Local States

We abstract the local state of a thread T in a similar way to our previous
work [20]. We first forget the variables that represent the buffer entries from
other threads than T (but we keep their local variables). We define in Figure 6
this abstraction. The intuition behind this projection is that these entries are
not observable by the current thread, yet it will still be aware of them once they
are flushed, because they will be found in the accessible shared memory. As a
consequence, forgetting them is an abstraction that can lose precision in the long
run, but it is necessary for scalability.

We then partition the states with respect to a partial information, for each
variable, on the length of the corresponding buffer: either it is empty (we note this
information 0), or it contains exactly one entry (we note this 1), or it contains
more than one (we note this 1+). The partitioning function, δT , is given in
Figure 7a. We use the notation LTS (x) as the length of the buffer of the variable
x for the thread T in the state S.

We use a state partitioning abstraction [5] with respect to this criterion, the
resulting domain being defined in Figure 7b. We recall that the partitioning itself
does not lose any information: −−−→−→←←−−−−

αp

γp
is a Galois isomorphism.

The intuition behind this particular partitioning is twofold: first, since our op-
erations behave differently depending on the buffer lengths, we regroup together



S ]
T ,

∏
T ′∈Thread
T ′ 6=T

pcT ′ ×Mem× TLS×
∏

x∈Shared

BufTx D]
T , P(S ]

T )

DT −−−−→←−−−−
απ

γπ
D]
T

γπ(X]
T ) ,

{
PC,M,S, (T, x) 7→ BTx ∈ S |PC,M,S, x 7→ BTx ∈ X]

T

}
απ(X) ,

{
PC,M,S, x 7→ BTx ∈ D]

T |PC,M,S, (T, x) 7→ BTx ∈ X
}

Figure 6: Forgetting other threads buffers as a first abstraction.

B[ , Shared→ {0; 1; 1+} Abstract buffer lengths

∀T ∈ Thread, δT : S ]
T → B[

δT (S]T ) , λx.


0 if LT

S
]
T

(x) = 0

1 if LT
S
]
T

(x) = 1

1+ if LT
S
]
T

(x) > 1
State partitioning criterion

(a) A partial information on states buffers

D]
T −−−→−→←←−−−−

αp

γp (
B[ → D]

T

)
αp(X]

T ) , λb[.
{
S]T ∈ X

]
T | δT (S]T ) = b[

}
γp(Xpart]

T ) ,
{
S]T ∈ S ]

T | S
]
T ∈ X

part]
T (δT (S]T ))

}
(b) The state partitioning abstract domain.

Figure 7: State-partitioning w.r.t. an abstraction of buffer lengths

the states with the same abstract lengths in order to get uniform operations on
each partition; second, each state in every partition defines the same variables
(including buffer variables, as explained in Remark 1), thus the numerical ab-
straction presented later will benefit from this partitioning: we can use a single
numeric abstract element to represent a set of environments over the same vari-
able and buffer variable set.

The next step uses the summarisation technique described by Gopan et al. [6]
In each partition, we separate the variables xT2 ...xTN (up to the size N of the
buffer for x in T ) from xT1 and regroup the former into a single summarised
variable xTbot. The summarisation abstraction is then lifted partition-wise to the
partitioned states domain to get a final summarised and partitioned abstract
domain. This domain is used through a Galois connection D]

T −−−−→←−−−−
αS

γS
DSum
T , as

defined by Gopan et al. [6]



Abstracting the Control. We also need to develop a new abstraction for the
control part of the local states. This control part was not present in the states of
the original monolithic semantics [20], which iterated its fixpoint over an explicit
product control state. The superiority of the thread-modular analysis lies in the
possibility of choosing the control abstraction to be as precise or fast as one
wants. In particular, one can emulate the interleaving analysis (the concrete
modular semantics being complete).

Several control representations have been proposed by previous authors [14,16].
Our domain is parametric in the sense that we can choose any control abstrac-
tion and plug it into the analysis. However, we tried a few ones and will discuss
how they performed as well as our default choice.

No abstraction. The first option is to actually not abstract the control. This
emulates the interleaving analysis.

Flow-insensitive abstraction. This abstraction [14] simply forgets the con-
trol information about the other threads. The intra-thread analysis remains
flow-sensitive regarding the thread itself. Albeit very fast, this is usually too
imprecise and does not allow verifying a wide variety of programs.

Control-partitioning abstraction. This technique was explored in sequential
consistency by Monat and Miné [16] and consists in selecting a few abstract
labels that represent sets of labels, and only distinguishing between different
abstract labels and not between two labels mapped to the same abstract
label. This is a flexible choice since one can modulate the precision of the
analysis by refining at will the abstraction. In particular, one can retrieve
the flow-insensitive abstraction by chosing a single abstract label, and the
precise representation by mapping each concrete label to itself.

We settled on the general control-partitioning abstraction and manually set
our locations program by program. Additional work is needed to propose an
automatic method that is both precise enough and does not add too many ab-
stract labels that slow down the analyses.

Formally, we define for each thread T a partition L]T of the control points
in L of T . Consider the program of Figure 2. The partition that splits after the
critical section end is L]T = {[1 .. l1] ; [l2 .. end]}. Note that this partition does
not formally need to be composed of intervals. Once this partition is defined,
we denote as α̇LT : L → L]T the mapping from a concrete control label to the
partition block to which it belongs: for instance, with the previous example,
α̇LT (lcrit start) = [1 .. l1]. With no abstraction, L]T = L and α̇LT = λl.l, and with
a flow-insensitive abstraction, L]T = {>} and α̇LT = λl.>.

Numerical Abstraction. We eventually regroup the original thread state and
the control parts of the local state in a numerical abstraction. Since control
information can be represented as an integer, this does not change much from
the non-modular abstraction. The partitioning has been chosen so that every
summarised state in the same partition defines the same variables (in particular,
the buffer ones xT1 and xTbot). Thus a well-chosen numerical abstraction can be
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Figure 8: Final local states abstraction

applied directly to each partition. This abstraction will be denoted as the domain
DN , and defined by a concretisation γN (since some common numerical domains,
such as polyhedras, do not possess an abstraction αN that can be used to define
a Galois connection).

Our analysis is parametric w.r.t. the chosen numerical abstraction: one can
modulate this choice to match some precision or performance goal. In our im-
plementation, we chose numerical domains that allowed us to keep the con-
trol information intact after partitioning, since it was usually required to prove
our target programs. Namely, we used the Bddapron [9] library, which provides
logico-numerical domains implemented as numerical domains (such as octagons
or polyhedras) on the leaves of decision diagrams (which can encode bounded in-
tegers, therefore control points, with an exact precision). As control information
is a finite space, this does not affect the calculability of the semantics.

The resulting global composed domain is recapped in Figure 8. For convenience,
we consider the γ̇LT concretisation of abstract domains to be integrated to the
γN definition of the numerical final abstraction, since both are strongly linked.

3.2 Abstracting Interferences

We recall that interferences in the transition system live in Σ×Thread×Σ. They
are composed of an origin global state, the thread that generates them, and the
destination global state. We group interference sets by thread: one group will
thus be an abstraction of P(Σ × Σ). We represent the control part of Σ as a
label variable pcT for each T ∈ Thread.

To represent pairs in Σ×Σ, we group together the origin and the destination
global states in a single numerical environment. We use the standard variable
names for the origin state, and use a primed version v′ of each variable v for
the destination domain. This is a common pattern for representing input-output
relations over variables, such as function application.

We then apply the same kind of abstractions as in local states: we forget
every buffer variable of every thread (including the thread indexing each inter-
ference set), and we abstract the control variables of each thread, using the same
abstraction as in local states, which is label partitioning.

We partition the interferences with respect to the shared variable they in-
teract with (which can be None for interferences only acting on local variables).
This allows us to close-by-flush after interference application considering only
the shared variables affected, as we discussed in Section 2.2.



After doing that, we use a numerical abstraction for each partition. Although
one could theoretically use different numerical domains for local states and inter-
ferences, we found that using the same one was more convenient: since interfer-
ence application and generation use operations that manipulate both local states
and interferences (for instance, interferences are generated from local states, then
joined to already existing interferences), it is easier to use operations such as join
that are natively defined rather than determining similar operators on two ab-
stract elements of different types.

3.3 Abstract Operations

Operators for computing local states and generating interferences can be derived
from our abstraction in the usual way: we obtain the corresponding formulas by
reducing the equation f ] = α◦f ◦γ. The local state ones are practically identical
to the monolithic ones [20], we will not restate them here.

We express in Figure 9 the resulting interference generation operators for
flush and shared memory writing. The local state transfer operators are almost
the same as in non-modular abstract interpretation, and the other interference
generators follow the same general pattern as these two, so we did not write
them for space reasons. D]

T is the abstract domain of local states, and I ] are
abstract interferences. B denotes function application (xB f B g is g(f(x))). We
write l1JstmtK]l2T for the application of the abstract operator JstmtK]T between
control labels l1 and l2. Note that l1 and l2 are concrete labels (linked to the
location of the statement stmt in the source program, and the corresponding
control graph vertices).

We draw the attention of the reader on the Jx := rKT interference generator:
it does only update the control labels of T . Indeed, the performed write only
goes into T ’s buffer, which is not present in the interferences. The actual write
to the memory will be visible by other threads though the flush interference,
that will be generated later (during the flush closure).

We refer to Monat and Miné [16] for the interference application operator,
that does not change from sequential consistency (the difference being that after
using apply, one will close by flush).

Soundness. The soundness proof of this analysis builds upon two results: the
soundness of the monolithic analysis [20], and the soundness of the concrete
interference analysis [15]. Our pen-and-paper proof is cumbersome, hence we
will simply explain its ideas: first, we already gave a formal soundness proof
for the monolithic abstract operators [20]. Our local operators being almost the
same, their soundness proof is similar. Miné [15] also shows that the interference
concrete analysis is both sound and complete. We show that our interference
operators soundly compute both the control and the memory part of the concrete
transitions: the control part only maps a label to its abstract counterpart, and
the memory part also stems from the monolithic analysis.
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Figure 9: Abstract operators for interference generation.

4 Experimentations

We implemented our method and tested it against a few examples. Our proto-
type was programmed with the OCaml language, using the BDDApron logico-
numerical domain library and contributing a fixpoint engine to ocamlgraph. Our
experiments run on a Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80GHz computer
with 8 GB RAM. We compare against our previous work [20].

Improvements on Scaling. To test the scaling, we used the N-threads version
of the program of Figure 2, and timed both monolithic and modular analyses
when N increases. Results are shown in Figure 10. They show that the modular
analysis does indeed scale better than the monolithic one: the performance ratio
between both methods is exponential. However, the modular analysis still has an
exponential curve, and is slower than in sequential consistency where it was able
to analyse hundreds of threads of the same program in a couple of hours [16].

We believe this difference is mainly due to the fact that, in SC, adding a
thread only adds so much code for the analyser to go through. This is not the
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Figure 10: Scaling results.

Test abp concloop kessel dekker peterson queue bakery
Non-modular 3 3 3 3 3 3 timeout after days
Modular 3 3 7 3 3 3 7

Figure 11: Precision results on small programs.

case in relaxed models, where adding a thread also increases the size of program
states, due to its buffers. Therefore the 8 threads version of the program has not
only 4 times as much code to analyse than the 2 threads version, but this code
also deals with a 4 times bigger global state: the analysis difficulty increase is
twofold, leading to a greater analysis time augmentation.

Testing the precision. Modular analysis, after abstraction, provides a more
scalable method than a monolithic one. This comes at a cost: the additional
abstraction (for instance on control) may lead to precision loss. To assess this
precision, we compare with our previous results [20] in Figure 11.

The analysis of these programs aims to check safety properties expressed as
logico-numerical invariants. These properties mostly are mutual exclusions: at
some program points (the combinations of at least two thread critical section
control points), the abstraction should be ⊥ (or the property false should hold).

The modular analysis was able retain the needed precision to prove the cor-
rectness of most of these programs, despite the additional abstraction. However,
it does fail on two tests, kessel and bakery. We believe that it could also pass
these ones with a better control partitioning, but our heuristics (see the next
paragraph) were not able to determine it.

Note that bakery is significantly bigger than the other examples. Although
our analysis could not verify it, it did finish (in a few minutes with the most
aggressive abstractions), whereas the non-modular one was terminated after run-
ning for more than a day. This is not a proper scaling improvement result due
to the failure, but it is worth noticing.

All the programs certified correct by our analysis are assumed to run under
the PSO model. Yet some programs may be correct under the stronger TSO
model but not under PSO: for instance, one can sometimes remove some fences
(between two writes into different locations) of a PSO valid program and get



a TSO (but no longer PSO) valid program. Our prototype will not be able to
check these TSO programs, since it is sound w.r.t. PSO.

Our main target being TSO, this can be a precision issue, which one can
solve by adding additional fences. However, we observed that all those tests,
except peterson, were validated using the minimal set of fences for the program
to be actually correct under TSO; this validates our abstraction choice even
with TSO as a target. We already proposed a method to handle TSO better by
retrieving some precision [20]: this technique could also be implemented within
our modular framework if needed.

Leveraging our Method in Production. For realistic production-ready ana-
lyses, one should likely couple this analysis with a less precise, more scalable one,
such as a non-relational or flow-insensitive one [11,14]. The precise one should be
used on the small difficult parts of the programs, typically when synchronisation
happens and precision is needed to model the interaction between threads. Then
the scaling method can be used on the other parts, for instance when threads do
large computations without interacting much. As, to be scalable, a concurrent
program analysis must be thread-modular anyway, we also believe this analysis
lays a better ground for this kind of integration than a monolithic one.

We also recall that our method requires the user to manually select the
control abstraction. The control partition is specified by adding a label notation
at chosen separation points. Most of the time, partitioning at loop heads is
sufficient. We believe this could be fully automated but are not able to do it
yet. Practically, we found that few trials were needed to find reasonably good
abstractions: putting label separations on loops heads and at the control point
where the properties must be check was often more than enough. An automatic
discovery of a proper control partitioning is left to future work and would be an
important feature of a production-ready analyser.

Finally, real-life complex programs feature some additional traits that are
not part of our current semantics. Some, such as pointer and heap abstraction
or shape analysis, are orthogonal to our work: dedicated domains can be merged
with ours to modelise it. Others are linked to the concurrency model, such as
atomic operations like compare-and-swap and lock instructions. The former
could be quickly added to our analyser: one needs to evaluate the condition, con-
ditionally perform the affectation, and flush the memory (like mfence would);
all this without generating or applying interferences inbetween. The latter could
also be added with a little more work: the idea would be to generate interfer-
ences abstracting a whole lock/unlock block transition instead of individual
interferences for each statement in the block.

5 Related Work

Thread-modular and weak memory analyses has been investigated by several
authors [1, 2, 4, 7, 8, 10, 13, 15–17], yet few works combine both. Nonetheless, it
was shown [3, 14] that non-relational analyses that are sound under sequential



consistency remain sound under relaxed models. Thus some of these works can
also be used in a weakly consistent memory environment, if one accepts the
imprecision that comes with non-relational domains. In particular, Miné [14]
proposes a sound yet imprecise (flow-insensitive, non-relational) analysis for re-
laxed memory.

Ridge [18] has formalised a rely-guarantee logics for x86-TSO. However, his
work focuses on a proof system for this model rather than static analysis. There-
fore he proposes an expressive approach to express invariants, which is an asset
for strong proofs but is less practical for a static analyser which abstracts away
this kind of details to build a tractable analysis.

Kusano et al. [11] propose a thread-modular analysis for relaxed memory
models, including TSO and PSO. They rely on quickly generating imprecise
interference sets and leverage a Datalog solver to remove interferences combin-
ations that can be proved impossible. However, unlike ours, their interferences
are not strongly relational in the sense that they do not hold control information
and do not link the modification of a variable to its old value. Thus this method
will suffer from the same kind of limitations as Miné’s flow insensitive one [14].

6 Conclusion

We designed an abstract interpretation based analysis for concurrent programs
under relaxed memory models such as TSO that is precise and thread-modular.
The specificity of our approach is a relational interference abstract domain that
is weak-memory-aware, abstracting away the thread-specific part of the global
state to gain performance while retaining enough precision through partitioning
to keep the non-deterministic flush computation precise. We implemented this
approach, and our experimental results show that this method does scale bet-
ter than non-modular analysis with no precision loss. We discussed remaining
scalability issues and proposed ways to solve them in a production analyser.

Future work should focus on more relaxed memory models such as POWER
and C11. We believe that interference-based analysis lays a solid ground to ab-
stract some of these model features that are presented as communication actions
between threads. However, besides being more relaxed, these models are also sig-
nificantly more complex and some additional work needs to be done to propose
abstractions that reduce this complexity to get precise yet efficient analyses.
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