
From Array Domains to Abstract Interpretation
Under Store-Buffer-Based Memory Models

Thibault Suzanne 􏷪 Antoine Miné 􏷫

9th September 2016
􏷪École Normale Supérieure, PSL Research University; CNRS; Inria

􏷫Sorbonne Universités, UPMC Univ Paris 6, Laboratoire d’ informatique de Paris 6 (LIP6)

Weakly Consistent Behaviour

x = 1; y = 1;
r0 = y; r1 = x;

The Programmer’s Intuition: Sequential Consistency
After execution, r0 = 1 || r1 = 1.

On x86
We can observe r0 = 0 && r1 = 0.

1

A More Useful Program: Peterson’s Lock Algorithm

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

2

Presentation of the Problem

• Most concurrent algorithms are designed and proved
under sequential consistency.

• We focus on verifying reachability properties on relaxed
memory models.

• We will use abstract interpretation and base our method
on existing array domains.

• An application is fence removal.

3

Plan

1. The Relaxed Memory Model

2. The Analysis Method

Partitioning

Summarisation

Numerical Domains

3. Experimentation

4. Future work

4

The Relaxed Memory Model

Total Store Ordering, the Base Model of x86

• Buffers are totally ordered FIFO queues.
• Buffers entries are flushed non-deterministically.
• Instruction mfence flushes the whole buffer of the thread.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer
𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42 𝑥 → 4

𝑥 → 0 𝑦 → 0

5

Partial Store Ordering

• Only preserves order between same variable entries.
• Equivalently, there is one buffer per variable (per thread).
• Mainly of theoretical interest.

PSO is strictly more relaxed than TSO: a sound analysis in PSO
is also sound in TSO.

∴ PSO can be seen as an abstraction of TSO.

6

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding

We use one pseudo-variable for each buffer entry.

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩􏷫 = 15

𝑥􏷩􏷬 = 42

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1 7

Direct Encoding: Remark

The number of pseudo-variables obtained is :

1. Unbounded.
2. Different between two states.

We need a specific domain that :

1. Is able to abstract unbounded states.
2. Will allow us to use usual abstractions (like numerical
domains) that operate on sets composed of states with
one same dimension.

8

The Analysis Method

The Interleaving Control Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

9

The Interleaving Control Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

9

The Interleaving Control Graph

• We build the product control flow graph representing all
possible interleavings.

• Each edge has a self loop while(random) { flush oldest }; to
represent the non-determinism of flushes.

• The analysis now becomes a usual fixpoint computation.

9

General Idea

Buffers are the hard(est) part of the analysis:

• They have an unbounded size.
• This size can change in a dynamic and undeterministic
way on virtually each execution step.

We propose to adapt array abstractions to efficiently represent
buffers.

10

The Analysis Method

Partitioning

Partitioning Criterion

Observation
The behaviour of program operations is sensibly different
whether the buffers are empty or not.

• A state has one buffer per variable per thread.
• We can abstract the length of these buffers: either it is 0, 1
or 1+ (more than 1).

• We regroup together the states that have the same buffer
abstract lengths.

11

Partitioning Criterion

Observation
The behaviour of program operations is sensibly different
whether the buffers are empty or not.

• A state has one buffer per variable per thread.
• We can abstract the length of these buffers: either it is 0, 1
or 1+ (more than 1).

• We regroup together the states that have the same buffer
abstract lengths.

11

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

Abstract Buffer Sizes: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑥, 0) ↦ 1+

(𝑦, 0) ↦ 1

(𝑥, 1) ↦ 1

(𝑦, 1) ↦ 0

12

The Analysis Method

Summarisation

Summarising the Buffers

In each state where they are defined (1+ in the partition), we
regroup the variables 𝑥𝑇􏷫 , ..., 𝑥𝑇∞ into a single summarised
variable 𝑥𝑇𝑏𝑜𝑡.

𝑥𝑇􏷪 is kept separated: otherwise, reading from the buffer would
be very imprecise.

13

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

Summarisation: an Example

Thread 0 Thread 1

Shared Memory

W
rite

Buffer

W
rite

Buffer

𝑟0 → 0 𝑟1 → 1

𝑥 → 1

𝑦 → 2

𝑥 → 15

𝑥 → 42

𝑥 → 4

𝑥 → 0 𝑦 → 0

𝑟0 = 0

𝑟1 = 1

𝑥􏷩􏷪 = 1

𝑦􏷩􏷪 = 2

𝑥􏷩𝑏𝑜𝑡 ∈ {15; 42}

𝑥􏷪􏷪 = 4

𝑥𝑚𝑒𝑚 = 0

𝑦𝑚𝑒𝑚 = 1

14

The Analysis Method

Numerical Domains

Using Numerical Domains for Abstraction

In each partition, all the states have the same buffer lengths.
Therefore the same summarised variables are defined.

Then we can use numerical domains (octagons, polyhedra…) to
abstract each partition.

15

Experimentation

Results

Algorithm Fences Time Fences∗ Time∗

Abp 0 0.3 0 6
Bakery - - 4 3429
Concloop 2 0.19 2 6
Dekker 4 23 4 121
Kessel 4 4 4 6
Loop2 TLM 0 4.3 2 36
Peterson 4 1.53 4 20
Queue 0 0.15 1 1

∗ Dan, Meshman, Vechev, Yahav. Effective abstractions for
verification under relaxed memory models. VMCAI 2014.

16

Future work

Improving Performances

• There can be a lot of non-empty partitions. Practically, we
found their number to be usually quite low.
Solution: an abstraction that merges partitions.

• Each numerical domain has a high dimension, which is
𝑂(𝑛𝑏_𝑣𝑎𝑟 × 𝑛𝑏_𝑡ℎ𝑟𝑒𝑎𝑑𝑠).
Solution: packing.

• The control flow graph has an exploding size.
Solution: thread-modular analysis.

17

Order-Preserving Abstractions

• Our abstraction loses order information between two
different variables.

• Summarisation makes it non-trivial to keep it.
Eg.: consider this concrete buffer:

𝑥 → 1 • 𝑥 → 2 • 𝑦 → 3 • 𝑥 → 4 • 𝑦 → 5

• Idea: summarised order information.

𝑥􏷩 < 𝑦􏷩 ∧ 𝑥𝑏𝑜𝑡 < 𝑦𝑏𝑜𝑡

The flush operation cannot flush 𝑥 anymore.

18

Order Matters: Back to Peterson

The first (commented) fence is needed in PSO but not in TSO.

/* Thread 0 */

flag_0 = true;

// mfence;

turn = true;

mfence;

while (flag1 && turn) { }

critical_section_thread0:

flag_0 = false;

// mfence;

/* Thread 1 */

flag_1 = true;

// mfence;

turn = false;

mfence;

while (flag_0 && not turn) { }

critical_section_thread1:

flag_1 = false;

// mfence;

19

Non-Uniform Abstractions

In general, we would like to use a wide range of table
abstractions, including non-uniform ones.

They could be used to encode some specific properties of the
program, like “the buffer is sorted”, which can be hard to do
with a program transformation approach.

20

Related Work

Analysis Under Weak Memory Models

• Kuperstein, Vechev, Yahav. Partial-coherence abstractions for relaxed
memory models. ACM SIGPLAN Notices 2011.

• Dan, Meshman, Vechev, Yahav. Effective abstractions for verification
under relaxed memory models. VMCAI 2014.

• Alglave, Kroening, Nimal, Tautschnig. Software verification for weak
memory via program transformation. ESOP 2013.

Table Abstractions

• Gopan, DiMaio, Dor, Reps, Sagiv. Numeric domains with summarized
dimensions. TACAS 2004.

• Cousot, Cousot, Logozzo. A parametric segmentation functor for fully
automatic and scalable array content analysis. ACM SIGPLAN Notices
2011.

21

Conclusion

• Our general framework adapts array abstractions to
represent buffers.

• With summarisation, we get a computable sound analysis
for TSO, which also happens to be sound for PSO.

• This analysis is both precise and efficient compared to the
state of the art.

22

Thanks for your attention !

22

	The Relaxed Memory Model
	The Analysis Method
	Experimentation
	Future work

